Agile estimating and planning

Presented by Simon Baker

think-box Limiteo

http://www think-box.co.uk

Produced with permission from Mike Cohn
Author of User Stories Applied for Agile Software Development
This material is based on his forthcoming book Agile Estimating and Planning

ile
Alliance

member

23M10/2004 2004 think-box Limited

[1 An agile approach

23M10/2004 2004 think-box Limited 2

An agile approach

23M10/2004

plans should be flexible enough to adapt with change

2004 think-box Limited

An agile approach

le process

ic agi

Gener

Let's define a simple agile process consistent with Scrum and XP
Software is developed in iterations

Attributes:

Deliver completed software in each iteration

Reprioritise often

2004 think-box Limited

23M10/2004

An agile approach

Make progress through successive refinement of functionality

» Take first cut at a piece of functionality knowing it's incomplete and refine
until the functionality is satisfactory

» With each iteration the functionality is improved through the addition of
greater detall

= An iteration has a fixed duration

» Requirements, analysis, design, coding, testing all happen concurrently
during an iteration

23M10/2004 2004 think-box Limited 5

An agile approach

Build and deliver functionality in pieces (increments)

» Each increment represents a complete subset of functionality and is
production-quality

» Arelease comprises one or more iterations that build upon each other to
complete a set of functionality

= A release does not need a constant duration like an iteration but it must be
an exact multiple of iterations

23M10/2004 2004 think-box Limited

An agile approach

We want to always complete the iteration work during the iteration

Complete

Code that is well written and well factored, checked-in, clean, compiles
with coding standards, and passes all tests

= Typical work carried forward includes:
» Bug fixing
» Exception handling
» Code to handle cases that became apparent during iteration

23M10/2004 2004 think-box Limited

An agile approach

Measure our rate of progress using velocity

Velocity

~ Amount of work completed in an iteration

Use velocity as our best guess of future progress

Yesterday’s weather

Today's weather, to a very rough approximation will be the same as
yesterday's weather

23M10/2004 2004 think-box Limited

An agile approach

» Use iteration boundaries as an opportunity to adjust priorities

= |t is easier to prioritise when all work in an iteration has been completed in
that iteration

» Scenario 1:
» Market research tells us ‘Undo’ support is more valuable than ‘Advanced search’
» ‘Basic search’ was completed in iteration 1
» It's easy to prioritise between ‘Advanced search’ and ‘Undo’ for iteration 2

» Scenario 2:
» ‘Basic search’ and ‘Advanced search’ are both partially developed in iteration 1
» Each has bugs to be fixed
» Should bugs be fixed to make last iteration useful or shall ‘Undo’ be added?

23M10/2004 2004 think-box Limited 9

An agile approach

Products are built from business-valued functionality

A project planned with engineering tasks rather than business-valued
functionality creates a number of problems:

1. We develop a less complete understanding of the system

» It's easy to plan an entire project using engineering tasks without understanding
the product being built

2. A completed schedule is reviewed by looking for forgotten engineering
tasks rather than forgotten / needed business functionality

3. Progress is measured by completion of engineering tasks rather than by
completion of business-valued features

» Business wants progress in terms of completed and meaningful functionality

. 2311012004 2004 think-box Limited 10

An agile approach

Estimate and plan with business-valued functionality described as user stories

User story

A brief description of functionality as viewed by the business

» User stories facilitate face-to-face communication with customer to solidify
details

» User stories allow development to start more quickly as details emerge

2311012004 2004 think-box Limited "

An agile approach

considered

23M10/2004

Plan at an appropriate level of precision for the distance being

1. When far away from something estimate it in one unit
2. When near something estimate it in a different unit
» From far away the team will make mistakes of a certain magnitude

» Looking close up the team will make mistakes of a different magnitude

2004 think-box Limited

An agile approach

When planning from a distance, e.g. when looking further out at a release:
» Acknowledge that planning cannot be done with any real precision

» Use story points as the estimation unit

» Produce a high-level plan:

» That tells us where we expect to be at various checkpoints (the ends of
iterations)

» Which we can use to tell if the project is ahead or behind where we expected to
be

. 2311012004 2004 think-box Limited 13

An agile approach

When planning close up , e.g. when looking at an iteration:
» Plan the engineering tasks to be performed for each user story

» Use ideal programming hours as the estimation unit

* Produce a detailed plan at the start of each iteration that adapts to changing
requirements or learning

. 2311012004 2004 think-box Limited 14

[0 Estimating with story points

2311012004 2004 think-box Limited 15

Estimating with story points

23M10/2004

can | have a large cola please

2004 think-box Limited

16

Estimating with story points

In a fast-food joint, you order a large drink as opposed to a small, medium or
extra-large one:

* You don't know how many fl.oz's you'll get

* You know large is bigger than small or medium

* You know large is smaller than an extra large

* You know from past experience that when this thirsty, a large drink in other
places has been about the right size

2311012004 2004 think-box Limited 17

Estimating with story points

Story points

Are a measure of magnitude, i.e. the ‘bigness’ based on the time it will take
to complete

* From a distance, story points are used to estimate the magnitude of a user
story

» The raw values assigned are not important

= What matters is the relative sizes:
» A story assigned 2 points should be bigger than a story assigned 1 point

» A story assigned 8 points should be smaller than a story assigned 13 points and
bigger than a story assigned 5 points

. 2311012004 2004 think-box Limited 18

Estimating with story points

Use the Fibonacci scale to estimate story points: 1,2,3,5,8,13,21, ...

= Using such a scale reflects the truth that as estimates get larger, we know
less about them

» The spread within the Fibonacci scale avoids discussions about why |
assigned 67 story points and you assigned 68 story points

= |f | assign a user story 1 story point and you assign it 2 story points it's worth
resolving because the difference is 100%

* Focus on pure relative sizing:

» It's quicker to discuss “this is bigger than that and smaller than the other” than it is
to decide “this is twice that’

23M10/2004 2004 think-box Limited

Estimating with story points

Triangulation

Triangulate - estimate a story by analogy to two or more other stories

» Compare a user story to one or more other user stories (ideally some will
have already been completed)

5 points

3 points 2 points

= Story 3 is bigger than Story 2 and smaller than Story 5. Story 5 is bigger than
Story 2 é

2311012004 2004 think-box Limited 20

2004 think-box Limited

Find what feels like a medium-sized story and assign points somewhere in

the middle of the Fibonacci scale
Each additional story is compared to the first story and assigned points

commensurate with story’s relative magnitude

23M10/2004

d
()
T
1]
et
N
o)
c
“
et
@
O

Estimating with story points

Instead of story points, assign ‘dog points’ representing the magnitude of
each of these breeds of dog:

» Labrador retriever
» Terrier

» Great Dane

» Poodle

» Dachshund

» German Shepherd
» St Bernard

» Bulldog

» What will you decide determines the ‘bigness’ of a dog?

2311012004 2004 think-box Limited 22

Estimating with story points

23M10/2004

»
»
»
»
»
»

= Based on height:

Breed Dog points
Labrador Retriever 9

Terrier 3

Great Dane 13

Poodle 3
Daschund 1

German Shepherd)

St. Bernard 8

Bulldog 3

» Dog points assigned:

Labrador retriever was selected as a medium-sized dog (5)

Great Dane is much bigger (13)

St. Bernard is bigger than a Labrador but smaller than a Great Dane (8)
Dachshund seems about as small as a dog gets (1)

German Shepherd seems about the same size as a Labrador retriever(5)
Bulldog is shorter but bigger that a Dachshund (3)

2004 think-box Limited 23

Estimating with story points

» Without more detall, it should’ve been difficult to assign dog points to
poodle and terrier

» There are toy, miniature and standard poodiles
» There are more than 20 breeds of terrier

» When given a loosely-defined user story (or dog):
» Discuss it with the customer

» Make some assumptions, take a guess and move on but return when more is
known

» Guess for poodle and terrier (3)
» Even the smallest are smaller than a Labrador Retriever

» Small poodles and terriers would be 1- or 2-point dogs, but there are bigger
breeds too, so on average 3 seems reasonable

2311012004 2004 think-box Limited 24

Estimating with story points

» Values must be distinguishable
» How do you tell a ‘67’ from a ‘68’? Why bother!
» This is addressed by the Fibonacci scale

* You have to guess a team’s initial velocity
» This problem only exists at the start of the first project

» After one iteration an actual velocity can be used to better predict the duration of
the project

= |t can feel uncomfortable at first
» Most developers quickly become accustomed

= Developers may make an implicit conversion
» “Most 3’s take a day, this seems like a day, I'll say it will take 3 story points”

2311012004 2004 think-box Limited 25

Estimating with story points

» |t's easier and quicker to estimate
» It's a simple comparison — “This is bigger than that and smaller than the other”

» You no longer need to think about how long a user story will take in elapsed
time and about the interruptions that may impact you

» Magnitude is independent of developer speed

» Developers can agree on magnitude even though it may take them different
elapsed times to implement

* You rarely need to re-estimate

» |If a developer estimates in elapsed time and becomes a faster programmer,
then his original estimates will be wrong

» |If a developer had estimated in magnitude, his estimates would remain correct —
‘big’ is still ‘big’; even though a developer may be faster

2311012004 2004 think-box Limited 26

Estimating with story points

1. During a release planning meeting three developers are estimating a
story. Individually they estimate the story at 2, 4 and 5 story points.
Which estimate should they use?

2. What is the purpose of triangulating estimates?

3. Team A finished 43 story points in their last 2-week iteration. Team B is
working on a separate project and has twice as many developers. They
also completed 43 story points in their last 2-week iteration. How can

that be?

23M10/2004 2004 think-box Limited

27

Estimating with story points

1. They should continue discussing the story until their estimates get
closer.

2. Triangulation improves estimates by making sure that each estimate
makes sense in relation to multiple other estimates. If a 2-point story
seems to be twice a 1-point story, it should also seem to be half of a 4-
point story.

3. The story points of one team are not comparable to the story points of
any other team. From the information in this questions, we cannot infer
that Team A is twice as productive as Team B.

2311012004 2004 think-box Limited 28

[0 Release planning

2311012004 2004 think-box Limited 29

Release planning

e

define a roadmap to guide development

2311012004 2004 think-box Limited 30

Release planning

Release planning defines a high-level development roadmap that
shows the main areas of focus for the next handful of releases
» Aim to balance the competing goals of more features versus early release

» Expect the roadmap to change as we learn more about the product, its
market and our ability to develop the product

* |nvolve the customer and the development team

. 2311012004 2004 think-box Limited 31

Release planning

Functionality and time

4 Date is fixed User stories are fixed
a User stories can vary Date can vary
=
o
@
E
g SIS SIS,

4 x

o 2

A1 114911

User stories are fixed

Date is fixed

User stories can vary

Date can vary

Time

23M10/2004 2004 think-box Limited

Release planning

Drive the project by business value rather than by fixed dates / features

*» For each release, establish a range of dates and combinations of features

» This approach buffers each dimension
» User stories are buffered using a Feature buffer
» Time is buffered using a Schedule buffer

» For example, starting with a date range in mind you might be able to say:

“After 6 to 8 iterations we should have these high business-value features and maybe
some of those additional medium and low business-value features”

» Feature buffer = some of those additional medium and low business-value features
» Schedule buffer = 6 to 8 iterations

2311012004 2004 think-box Limited 33

Release planning

» Given the highest business-value user stories the customer identifies those
he considers mandatory

= The customer then identifies lower business-value user stories which he
considers to be optional

*» Plan the release for the complete set of user stories

= |f time permits some or all of the optional user stories will be developed, but
only after the mandatory user stories have been completed

2311012004 2004 think-box Limited 34

Release planning

Mandatory user stories = 100 points and the optional user stories = 20 points
Velocity = 10 story points, therefore we should release after 12 iterations

Mandatory user stories Optional user stories

= |f we're on schedule:
» The mandatory user stories will be delivered in 10 iterations

» The customer can then decide whether to deliver the optional user stories in
another 2 iterations

= [f we're behind schedule:
» We have another 2 iterations to deliver the mandatory user stories

2311012004 2004 think-box Limited 35

Release planning

tasks to be performed

Release plan

Comprises user stories ordered by business value and estimated in story
points. It provides the development team with guidance about their
schedule and tells them where they expect to be at the end of each
iteration. It has general uncertainties.

» Release plans should not:

» Indicate which developers are assigned to which user stories

» Indicate the sequence in which work within an iteration will be performed
Disaggregate user stories into engineering tasks
Creating a release plan with this level of detail would be misleading

E

b

23M10/2004 2004 think-box Limited

A release plan describes features to be delivered and not engineering

36

Release planning

23M10/2004

Customer writes the user stories

Customer selects a target date ranges for the next few releases
Developers estimate the user stories as a team using story points
Developers calculate the number of iterations in the releases

Developers derive their velocity

Customer prioritises the user stories in descending order of business value

Assign stories to the next few releases in priority order and based on the
team’s velocity

Assign stories to the iterations in priority order based on the team’s velocity

2004 think-box Limited 37

Release planning

» The customer writes the user stories and the acceptance tests

from a business / user perspective

23M10/2004 2004 think-box Limited

» The development team should be prepared to collaborate with the customer

» A tester can assist with the acceptance tests especially if they are automated

* |n the worst case, the developers write the user stories and acceptance tests

38

Release planning

* What is the external force driving the need for release?
» Significant enhancement or new functionality
» Previously announced public milestone
» Contractual obligation

= |s the date fixed?

» The customer should communicate date constraints to the team
» Use a feature buffer

» |n all other situations, think in terms of a date range or window

2311012004 2004 think-box Limited 39

Release planning

» Estimates represent the cost of a project’s requirements

* Prior to selecting the contents of release, it's important to:
» Estimate every user story
» Quantify the technical risk of every user story

= Estimate the user stories as a team

» The team doesn’t yet know who will work on a story, therefore ownership cannot
be more precisely assigned than to the team collectively

» Estimate the user stories using yesterday’s weather
» |If possible, base a story’s estimate on a similar story already done

» Valuable discussion to have around a user story estimate is "Why is this so
expensive?"
» This often uncovers unspoken assumptions
» Can lead to a simpler (to implement) user story

2311012004 2004 think-box Limited 40

Release planning

1I0NS

Calculate number of iterat

Step 4

-+

2004 think-box Limited

Half- or quarter-iterations will affect the velocity going forward so don’t use

The release should be an exact multiple of iterations
them

The iteration duration is fixed

»

23M10/2004

Release planning

» Use historical values when available
» Stability — same team, same technology, same working environment — is vital for a
previous velocity to be meaningful

= Orrun an iteration and use the observed velocity to plan

» In an iteration, you’ll deliver features with business value and establish a velocity
with which to plan with confidence, rather than have produced a Gantt chart with

estimates based on analysis

» Or make a forecast / educated guess
» Disaggregate user stories into engineering tasks and estimate in ideal hours

» Based on the distribution of ideal hours among stories assign story point estimates
from Fibonacci scale
» Make a conservative assumption about developer productivities

» Count up the story points to give you a forecast velocity

2311012004 2004 think-box Limited 42

Release planning

» Use risk-biased value order, i.e. within approximately equivalent
value-bands develop riskiest user stories first

High risk
Low value

High risk
igh value
(Avoid)

Risk

Low risk
Low value

(Do last)

Value

23M10/2004 2004 think-box Limited

Give neither risk nor business value total supremacy when prioritising

43

+

to release

1eS

tor

2004 think-box Limited

ign user s

240 story points in the release

Ass

Actual or estimate of velocity per iteration = 30 story points

Number of iterations in release = 8 iterations

-
30 x8

»
»
»

Velocity x Number of iterations = Total story points in release

23M10/2004

Release planning

Step 7

Release planning

» Assign user stories to iterations in descending order of business value

» There may be a compelling reason (e.g. a dependency) to develop that
low-priority user story with this high-priority user story

» Pebbles and sand: Spare capacity in the iteration can be filled with small
user stories

lterations

1 2 3 4 5 6

Story 1 Story 5 Story 6 Story 7 Story 12 | Story 14

Story 2 Story 8 Story 9 Story 11 | Story 13 | Story 16

Story 3 Story 10 | Story 15

Story 4 Story 17

. 2311012004 2004 think-box Limited 45

Release planning

Company sells PDAs and marketing has determined that customers want
basic chequebook management software in next release

Step 1: Customer has written the user stories

User story

A user can enter cheques into her account

A user can enter deposits into her account

A user can enter electronic funds transfers into her account

A user can search for a cheque by payee, amount, cheque #, date

A user may have multiple accounts

A user can manually balance her account

A user can automatically balance her account

A user can print cheques

A user can delete cheques

Transactions can be manually downloaded from bank sites

A user can mark a chegue as void

Various reports on spending history are available

23M10/2004 2004 think-box Limited

46

Release planning

Step 2: Select a target date range for the release

done in 3-4 months

» We cannot risk being late

» Target a minimum set of features within 3 months

» |f progressing well, consider extra feature(s) for outer 4-month target

23M10/2004 2004 think-box Limited

* For the device to be included in a certain magazine review, it needs to be

47

Release planning

23M10/2004

Step 3. Team estimates the user stories

= Developers assign story point estimates to each user story

User story Story points
A user can enter cheques into her account 7
A user can enter deposits into her account 3
A user can enter electronic funds transfers into her account 4
A user can search for a cheque by payee, amount, cheque #, date 10
A user may have multiple accounts 4
A user can manually balance her account 7
A user can automatically balance her account 7
A user can print cheques)
A user can delete cheques 1
Transactions can be manually downloaded from bank sites 10
A user can mark a chegue as void 1
Various reports on spending history are available 10
Total story points 69

2004 think-box Limited

48

Release planning

Step 4: Calculate the number of iterations
= lteration duration is fixed at 2-weeks

* Provide enough checkpoints on progress and opportunities to steer
project by reacting to new information/feedback, and adjusting priorities
accordingly

= 3 months = 6 iterations

= 4 months = 8 iterations

23M10/2004 2004 think-box Limited

49

A

/ story points

2004 think-box Limited

Same team composition, same technologies, same working environment,
same iteration duration
Previous actual velocity (from previous project)

Step 5: Derive the team’s velocity

23M10/2004

]
o
=
o
=
c
c
Lo
o
0
"
s
9
0
1 2
.Le.
o
£
T
"
L)

Release planning

Release planning

Step 6: Prioritise the user stories

» Customer prioritises the user stories

User story Story points
A user can enter cheques into her account 7
A user can enter electronic funds transfers into her account 4
A user can enter deposits into her account 3
A user can search for a cheque by payee, amount, cheque #, date 10
A user may have multiple accounts 4
A user can manually balance her account 7
A user can automatically balance her account 7
A user can print cheques)
Transactions can be manually downloaded from bank sites 10
A user can delete cheques 1
A user can mark a chegue as void 1
Various reports on spending history are available 10
Total story points 69

23M10/2004 2004 think-box Limited

51

Release planning

Step 7: Assign user stories to the release

User story Story points

A user can enter cheques into her account 7

A user can enter electronic funds transfers into her account 4

A user can enter deposits into her account 3

A user can search for a cheque by payee, amount, cheque #, date 10

A user may have multiple accounts 4

A user can manually balance her account 7

A user can automatically balance her account 7
Total story points 42

= Worst case:

» Implied velocity = 42 / 8 = 5 story points

23M10/2004 2004 think-box Limited

» Release in 4 months with only 42 story points

» Release in 3 months, i.e. after 6 2-week iterations. Velocity = 7 story points.
Release can contain 7 x 6 = 42 story points

52

Release planning

Step 8: Assign user stories to iterations

» Each iteration must be planned to include 7 story points

Iteration User story Story points

1 A user can enter cheques into her account 7

2 A user can enter ~'=ctronic funds trarsfers into her ac~aunt 4
Ausercanente 3= 5 ond e 1 C CIF L 3

3 A user can search for a cheque by payee and amount 7

4 A user can search for a cheque by cheque # and date 3
A user may have multiple accounts 4

5 A user can manually balance her account 7

8 A user can automatically balance her account 7

» Fourth user story was 10 story points and has been split
» A user can search for a cheque by payee and amount — 7 points
» A user can search for a cheque by cheque # and date — 3 points

23M10/2004 2004 think-box Limited

2004 think-box Limited

iterations will it take the team to complete a project with 27 story points if they

Assuming 2-week iterations and a team of four developers, how many
have a velocity of 47

. What are the three ways of estimating a team’s initial velocity?

23M10/2004

1
2.

N
-
9
i
(/)
@
=
<}

Release planning

2004 think-box Limited

With a velocity of 4 and 27 story points in the project, it will take the

team 7 iterations to finish.

. You can use historical values, take a guess, or run an initial iteration
and use the velocity of that iteration.

23M10/2004

1
2.

n
Y
Q0
S
n
=
g

Release planning

[0 Estimating with ideal time

2311012004 2004 think-box Limited 56

a plan is only as good as the estimates it is based on

2311012004 2004 think-box Limited 57

0
S
e
O
0
v
&
i ©
S o
S DR
@D (D)
() ? S
O & =
o« ©
- o o
o 3 o
0 - 5 d
&~ o . 9
- o B8 9 ® 3 ;
a7l g £ £ 3 k
® 2 - 0 £
o 2B Q ®
<l Z 5 5 &
o -
2 © 2 o
()] 0 i o) 0]
e = =
> c & [0 O
Q ® Q = ®
Q — L
= ® £ +
-) 5 — %)
2 = o L2
@ @
| <C 0 hu O
| 5 o C
| ;) | § | C
el © £ O o
| & 2 = o D
I > m ! O by]
| 5 o LO O
| % | S = £ O
Hl - > 8 £
| .m | W <r B T m
| 2| S = :
| & I [= = Q
| m Q
m ...m d 1NN NN I N I I T T O I
| w — ANEEEEENEENEEEEEEEEEEEssEEEsEssssssssssssnssssmsssmseesseaessili o0

Estimating with ideal time

Ideal programming time

Ideal programming time is an estimate of how long an engineering task
would take if it's the only thing a developer works on, everything needed is
available when the task is started, and there are no interruptions.

Typical everyday interruptions include:
» Holidays
» Sickness
» Meetings, emails and phone calls
» Demonstrations and code reviews

Estimate engineering tasks in ideal programming hours

2311012004 2004 think-box Limited 59

Estimating in ideal time

Question:

Answer:;

guess.

23M10/2004

The more effort we put into something, the better the result.
Right?

Yes, but often we can expend just a fraction of that effort to get
results that are ‘good enough’

We can spend a little time thinking about an estimate and arrive at a
number that is nearly as good as if we had spent a lot of time thinking
about it. No matter how much effort is invested, the estimate is still a

2004 think-box Limited 80

Estimating in ideal time

23M10/2004

Accuracy

7

7

/////////é///: Agile teams
7
3

Effort

» Qutside green zone: Effort includes extensive requirements, upfront
analysis, detailed planning from the start. After this upfront effort, estimates

still retain inaccuracy

2004 think-box Limited

* Notice how little effort is required to move the accuracy up from the base line
— about 10% effort gets 50% potential accuracy

» Inside green zone: We acknowledge inaccuracy cannot be eliminated from
estimates but small efforts can often be rewarded with big gains

61

Estimating with ideal time

Deal in ideal time for as long as possible and convert to elapsed time
only when necessary

Calculating how many elapsed hours in an ideal hour:

» Using historical values
» Use velocity, e.g. in previous the iteration the team completed 100 ideal hours
lteration = 2 elapsed weeks
lteration = 80 elapsed hours per Developer x 5 developers
lteration = 400 elapsed hours
1 ideal hour = 4 elapsed hours

= Without historical values
» Take a guess (it's only a starting estimate)
» Use the rule of thumb: 1 ideal hour = 2-3 elapsed hours

2311012004 2004 think-box Limited 82

Estimating with ideal time

» Some developers will make implicit conversions in their minds as they
estimate:
» A developer considers task and decides it will take 1 elapsed week to complete
» Knowing that 5 elapsed days = 16 ideal hours, he estimates task at 16 ideal hours
» ldeal time will later be converted to elapsed time
» Estimate goes from elapsed to ideal to elapsed time

What is the result when you translate an English paragraph into French
and then back into English?

2311012004 2004 think-box Limited 83

Estimating with ideal time

» Estimating in ideal time is simple
» A developer need only consider the time to complete the engineering task

» Estimating in elapsed time is flawed because a developer cannot anticipate all
of the interruptions that will occur in the future

* An estimate in ideal time remains useful, e.g. a task = 40 ideal hours
» It's fair at any time to ask how long it will take to get 40 ideal hours on the task
» When first estimated the developer said it will take 80 elapsed hours
» Now the developer is busier so the task will take 100 elapsed hours

» |deal time is easy to understand

» Everyone should understand that 8 hours each day are not spent on
programming, testing or otherwise making progress on engineering tasks

2311012004 2004 think-box Limited 64

] lteration planning

2311012004 2004 think-box Limited 85

Iteration planning

plan the next iteration in detall

23M10/2004 2004 think-box Limited

66

Planning up close

Iteration planning looks no further forward than the current iteration

» Create a detailed, actionable plan for the iteration
* Fine-tune the plan based on new information and knowledge
= |t's an opportunity to reprioritise the release plan

» |nvolve the customer if reprioritisation necessary

2311012004 2004 think-box Limited 67

Iteration planning

An iteration plan describes the engineering tasks that need to be
completed to deliver the user stories

Iteration plan

Comprises user stories disaggregated into engineering tasks and
estimated in ideal programming hours. It provides information that the
developers will track progress against.

» |teration plans should not:
» Assign developers to engineering tasks at the start if the iteration

23M10/2004 2004 think-box Limited

68

2004 think-box Limited

Disaggregate each user story into engineering tasks and estimate

ldentify / confirm the user stories selected for the iteration
how long each task will take in ideal time

Commit to the work

23M10/2004

1
2.
3

N
Q.
@
i
N
o)
=
c
-
L
Q.
c
O
o
1]
-
@
—

Iteration planning

Iteration planning

» Plan to complete the same number of story points as the last iteration

» The release planning identified the default user stories scheduled for
iteration

» With the customer, quickly reconsider whether the release plan still identifies
the highest business value user stories

» Confirm or adjust the selected user stories while satisfying the team’s
velocity

2311012004 2004 think-box Limited 70

Iteration planning

»

»

»

»

»

»

»

23M10/2004

» Developers disaggregate each user story into engineering tasks

» The team estimates the engineering tasks in ideal hours

» Example user story: “A user can save her preferences’

Engineering tasks:

Code user interface

Create database table(s) to store preferences

Code to store and retrieve preferences in database

Code to load preferences when a user logs in

Refactor parts of application so that they use saved preferences
Code for new FitNesse fixture (acceptance tests)

Code FitNesse test page

2004 think-box Limited 7

Iteration planning

»

»

»

»

»

»

»

23M10/2004

» Write tasks for the following:

Programming tasks

System / Acceptance testing tasks (not unit testing — this is an implicit activity
within test-driven development)

Extraordinary events, e.g. 4-hour full team meeting
Any new activity or an activity that varies significantly in effort

» Do not create tasks for the following:

Planning activities, e.g. estimate new stories, if they are roughly constant
across iterations

Activities that were tasks but have now become routine
Repetitive work that is part of daily / weekly routine, e.g. answering emails

= Be consistent

2004 think-box Limited 72

Iteration planning

What is the right size for a task?

» |deally between 8 and 16 ideal hours

» This size allows developers to report significant progress or co
a daily basis

23M10/2004 2004 think-box Limited

~y

.Y ™
J

73

Iteration planning

= [Exa
»
»
»

»

»
»

»

23M10/2004

» Some user stories are difficult to disaggregate into tasks

mple: Need to make a small change to a legacy system

We're not confident that all possible impacts have been identified

We've identified some code sections that would be affected — 4 ideal hours
We're unsure about other code sections — could be as much as 20 ideal hours
We can’t be sure without code analysis but don’t want to interrupt planning

» Solution: Split user story into 2 smaller user stories:

Let's determine what's affected — 2 ideal hours (could also be a spike)
Let's make the changes — 10 ideal hours

Let's take a guess and re-estimate when we know more and then disaggregate
into tasks

2004 think-box Limited 74

» |deally all bugs should be resolved during the iteration
» Try to avoid carrying bugs forward to the next iteration

= |f a bug is found with say, 1 elapsed hour remaining in the iteration
» Write a task, e.g. Fix bug 439, user cannot reset password
» Carry that task forward to next iteration so that it's not forgotten

23M10/2004 2004 think-box Limited

75

Iteration planning

» The development team review the quantity of work and assess whether it
can be achieved within the iteration

» |t's possible that one or more user stories is more work than originally
thought. Either:

» Split the user story and re-estimate the new stories in story points separating
the engineering tasks accordingly

» Descope the user story from the iteration

* Do not attempt to complete more work than is realistic for team

. 2311012004 2004 think-box Limited 76

Iteration planning

The more historical information available, the better the planning and
predictability you can achieve

» We know what was planned for in the previous iteration

» We know what was achieved in the previous iteration (potentially more or
less than the planned level)

» Calculate an estimation accuracy % (which should stabilize over time at the
member level and especially at a team level)

» We know what is planned for this iteration

» Calculate a forecasted actual effort based on the estimation accuracy %

2311012004 2004 think-box Limited 7

Iteration planning

Resist the temptation during iteration planning to have developers
volunteer for (or be assigned to) engineering tasks

= A developer should only be signed-up to one task at a time
» Volunteer for the next task when the current task is completed

» Assess the team’s estimate to ensure it is commensurate with the developer’s
own abilities

» This approach avoids problems associated with multitasking

* Foster a “we’re in this together” attitude

» Developers pick up the slack for each other knowing the favour will be returned
» This avoids the problem where one developer is blocked by another developer

. 2311012004 2004 think-box Limited 78

lteration 1:

= 10 story points

» During iteration planning, lteration 1 resulted in a total task estimate of 80
ideal hours

= At the conclusion of lteration 1, actual effort was 100 ideal hours

» All user stories were accepted, Velocity = 10 story points

2311012004 2004 think-box Limited 79

Iteration planning

lteration 2;

= Plan 10 story points based on prior velocity

» |teration planning results in 90 ideal hours of estimated tasks (therefore
there may actually be some task risk in the iteration)

= |teration results in 108 ideal hours of actual effort

» Likely 1 story did not get completed, let's say 1 story point
» Perhaps split from a larger story

* New Velocity = 9 story points

2311012004 2004 think-box Limited 80

Iteration planning

Example: Iteration planning [3/5]

lteration:

Plan 9 story points based on prior velocity

lteration planning results in 85 ideal hours of estimated tasks

lteration results in 100 ideal hours of actual effort

All user stories accepted, Velocity = 9 story points

2311012004 2004 think-box Limited 81

Iteration planning

Over 10 iterations:
» Team stabilizes on a velocity of 9 story points

» On average:
» Task estimate of 85 ideal hours
» Actual effort of 103 ideal hours
» Estimation accuracy of ~83%

» Take velocity, task estimate and estimation accuracy into account when
planning lteration 11

* We Know that with an estimation accuracy of ~ 83%, task actual effort will
likely be in the 103 ideal hours range

. 2311012004 2004 think-box Limited 82

Iteration planning

lteration 11:

» When planning iteration 11, say the task estimates add up to 200 ideal
hours

* This means that we really estimated badly at the story level and need to
decide what to do

= We could:
» Re-estimate the stories based on better information and re-plan the iterations
» Remove a story or two from the iteration (therefore reducing the planned
velocity)

» Proceed with the iteration as planned and very likely remove a user story or
two during the iteration

2311012004 2004 think-box Limited 83

-+

2004 think-box Limited

We would not be surprised if it was done in what would’'ve been better

Imagine a user story has been estimated at 3 story points
estimated at 1 or 5 story points

23M10/2004

]
9
—
(/)
)
)
®
£
“
N
)
=
-
w
=
1]
T
@
(&)
-
-

Iteration planning

Iteration planning

>

N

Prabakility of Completicn

Time
tn 1y L

= t,.. Most likely single duration for the user story

= t, .. Duration at which half the time the user story is finished ahead of
schedule and half the time the user story is finished behind schedule

= t,.. Duration to complete the user story even if many things go wrong

2311012004 2004 think-box Limited 85

A

Time

2004 think-box Limited

S

Loneidwag Jo Ageqaid

to

-

Since <50% of curve to left of t,then >50% chance work will not be

Many developers will give t,or t, as their estimate
completed by then

23M10/2004

]
3
&2,
(/)
)
)
®
£
“
N
)
=
-
w
=
1]
T
@
(&)
-
-

Iteration planning

Iteration planning

» Use all pieces of information at your disposal to plan and manage execution

» Break the mental relationship between high-level estimates and elapsed time

= At the release planning level we are looking for consistency to maintain the
relative magnitudes

= At the iteration planning level it's possible that 2 3-point stories may be
estimated at 16 and 26 ideal hours. These are stories at opposite ends of the
distribution scale

= Qver time, consistency between the estimates will very likely be achieved
and should provide improved planning and project predictability

» Agile teams have moved away from individual metrics to focus on team-
based metrics for planning and predicting, i.e. velocity, total task estimate for
the iteration

2311012004 2004 think-box Limited 87

Iteration planning

Wherever possible teams should develop in parallel using interface-
driven design with test-driven development techniques

= But that's not always practical so use a consecutive dependency carefully

= |f Team 1 under-delivers in the second iteration then Team 2 is affected and
the ripple effect passes down schedule

Team 1 A B E X
Team 2 C —|-r F Y

Team 3 D G

» |t's important to protect the deadline and maintain a synchronised iteration
schedule across all teams

88

23M10/2004 2004 think-box Limited

Iteration planning

A feeding buffer is a lower-planned velocity

» Example: Each team has a velocity = 20 story points
» Establish a feeding buffer by assigning only 10 story points to the second iteration
» Missing 10 story points serve as the feeding buffer
» Protect start of F by giving Team 1 a small buffer to ensure the completion of B

Team 1 A B |Bufrer E X
Team 2 C _L F Y

Team 3 D G 7

» This scenario shows a feeding buffer can be established by shifting work
from B presumably into E.

2311012004 2004 think-box Limited 89

» What if Team 2 is dependent upon functionality that will take all of the first
and second iterations to deliver?

» Then the feeding buffer becomes part of the following iteration

» Any work not delivered in the first and seconds iterations is developed at the start
of the third iteration

» Notice how Team 2 has moved functionality Y forward

(o] [[]

Team 3

2311012004 2004 think-box Limited o0

Iteration planning

Use feeding buffers only when absolutely necessary because they can
prolong a schedule

» Add a feeding buffer for critical dependencies between iterations and teams
where development has to occur consecutively
» If ateam is unable to do its planned work without the deliverables of another team

» Do not add a feeding buffer:
» When a team can easily swap in other valuable work

» If the second team will be able to progress with a partial deliverable from the first
team — Interface-driven design, mock objects and tests

» When dependencies betweens tasks are done during a single iteration by a single
team

2311012004 2004 think-box Limited o1

Iteration planning

» Most inter-team dependencies are based on a handful of user stories

* Rule of thumb:
» Feeding buffer = 50% of the size of the user stories creating the dependency

» Example: Team 2 is dependent on Team 1 for 6 stories with an estimate of
24 story points

» The feeding buffer =24 / 2 = 12 story points
» Team 2 plans for Team 1 to deliver in 24 + 12 = 36 story points
» Team 1 has velocity of 20 story points

Team 1 20 18 4 20
Team 2 25 25 _|-> 25

. 2311012004 2004 think-box Limited 92

[0 Tracking and metrics

2311012004 2004 think-box Limited o3

Tracking and metrics

keeping score provides regular and rapid feedback

2311012004 2004 think-box Limited 24

Tracking and metrics

* During development we want to constantly measure:
» How much more work we have to do
» How fast we are doing work

» Relative distance — how much more work we have to do
» Velocity — how fast we are doing work

23M10/2004 2004 think-box Limited

» Using an aeroplane analogy the measurements become:

95

Tracking and metrics

» At the start of a release, we establish a plan that states something like “Over
the next 4 months and 8 2-week iterations we’ll complete approx. 240 story
points”

= At the end of each iteration we'd like to assess where we are relative to that
goal

» However, there are many forces at work which need to be taken into account
» The amount of progress made by team
» Changes in requirements

» Developers may have learned things that make them want to revise estimates for
future work in the release

» Continuing the analogy, these forces are similar to those experienced by an
aeroplane

. 2311012004 2004 think-box Limited 96

Tracking and metrics

23M10/2004

Progress

Wind
Changes to estimates

Drag
Changes to requirements

Drag (changes in requirements) will cause the aeroplane to travel less
distance than would be inferred from its speedometer

The aeroplane’s compass points due west but the wind (changes in
estimates) will cause it to drift south

Without course corrections, the aeroplane will take longer to get to its

original destination

2004 think-box Limited

97

Tracking and metrics

Adding legs to a flight

You can add all the legs you want, but unless you
can increase the plane's speed you are going to
arrive at your destination later

Adding features to a release

Increase the speed of the plane by
increasing engine size

But it will cost installation time

Add more team members

You can increase speed by pushing the
engines harder

Which decreases their life span

Working overtime

Aircraft maintenance

Neglecting ongoing maintenance can be expensive
with a plane (project) grounded when it's supposed
to be in the air or a plane crashing to the ground

Unit tests and constant refactoring

Boarding a plane

Release start-up overhead

23M10/2004 2004 think-box Limited

98

2004 think-box Limited

“Over the next 4 months and 8 2-week iterations we’ll complete

approximately 240 story points of work”
At end of each iteration we’d like to assess where we are relative to that goal

Release plan states something like:

23M10/2004

c
=
e

©

S

()
=

e

©

o)
=
=X

S

©

S
-

Tracking and metrics

100

2004 think-box Limited

isited

The number of story points completed per iteration.

23M10/2004

Velocity rev

Tracking and metrics

Tracking and metrics

We’re good at knowing when something hasn’t been started and we’re fairly
good at knowing when it's done

Only count story points toward velocity for the user stories that are
complete at the end of the iteration

Complete

Code that is well written and well factored, checked-in, clean, compiles
with coding standards, and passes all tests

2311012004 2004 think-box Limited 101

Tracking and metrics

» The problem with counting incomplete user stories is it's difficult to know how
much progress has really been made

» Which is further along?
» A story that has been developed but has had not tests run against it, or
» A story that has been partially developed and partially tested

* Mowing a lawn analogy:
» On the left, it's easy to look at the lawn and say you’ve mowed roughly a third of it
» On the right, it's more difficult to say how much has been mowed without effort

. 2311012004 2004 think-box Limited 102

Tracking and metrics

Minimise the number of times incomplete stories are carried forward

» |f incomplete stories are present at the end of an iteration, the customer can
prioritise them into the next iteration

Retain the original story point estimate and allow team to earn the full
amount in next iteration

» This may cause the velocity to fluctuate more between iterations, so take a
rolling average

Velocity

Average number of story points completed over recent iterations

2311012004 2004 think-box Limited 103

Question:

Answer:;

23M10/2004

Why is velocity is better than straight forward estimating?

With absolute estimating, the only way to improve is to try
and get better at being more accurate. But as software
development is unpredictable by nature, this is difficult.

With relative estimating, it doesn't matter how bad your
estimates are, as long as you can be consistently

bad. Velocity gives you a tool for adjusting the measure of
how bad you are.

This means that you don't have to worry about trying to
guess how much time you'll be spending doing non-
programming things like meetings, etc.

2004 think-box Limited 104

Tracking and metrics

» Use V1 to log your effort (which gets recorded as Done) and constantly
assess and adjust the amount left To Do

Task
Estimate Done Effort To Do
on Baker | L|

-
VERSION 13.00 2.00 11.00
| progects | riy Home | 400 2.00 2.00

Shopping
Spr| nt Tracking Setup > Backlog Planning » Release Flanning > Sprint Planning > Sp| B |:| |:| 8 E||:|
By Backlog Item | By Member | Tests

Backlog 1,k Estimate Do
Estimate
68.00 74.00 60.50 .00
47.00 19.00 0.00 19.00
Relsase: | (All) ~ |Taam: [(al) (v |sprint: | Sprint 5 (v Filter: | (%]Find) Add Backiog Itsrn
Tasks Epport (.mpx) | Export (,xls)
Task
Backlog Item/Task v.a Quner Status EstimateEstimate Done Effort To Do
B Superussr changes £150 per person in admin consale a v [Future v 5.00] 1300 0.00 13.00 Edit| Copy | Add Task
Extend Payment Schedule switch to read initial ... a v 4.00 4.00) H Edit | Delete
Implement spike (=] - 5.00 5.00| H Edit | Delets
Spike (=] w 1.00 1.00] H Edit | Delete
B Enhancements / Refactorings(2)(2) (] Dave Walker - Done v 24.00 0.00 0.00 Edit | Copy | Add Task
Auto calculation bug with LCC e Dave Walker w H Edit | Delete
Default Finsl/Interim payment date (] Dave Walker v H Edit | Delets
Final payment not editable (] Dave Walker v H Edit | Delete
E35P recompilation in dev = Jon Barber v Future v [e00] o0 0.00 6.00 Edi | Copy | Add Task
Deploy exploded WAR in dev €3 [10n Barber v =2.00| [3.00) H Edit | Delete
Insert jasper fragment in web.xml £ [1on Barber v 3.00| [| 300]n Edit | Dalate
118N (=] [v Future v [so0 Edit | Copy | Add Task
Minimumn deposit 100 per person (2= [v Future v | | Edit | Copy | Add Task
Show Completed Tasks
Apuli | Reset
2311012004 2004 think-box Limited 105

Tracking and metrics

Tracking progress

* V1 is like the monitor in an aeroplane which constantly displays speed,
estimated arrival, position relative to destination

Estimation Accuracy (Member/Release); Fasthook Export {.xls)
Member/Release all Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Unassigned)
(Everyone) 107% 82% 115% 127% 112%
Dave Walker Datails 100% 100% 100% 100% 100%
Release 1 - simple OP 100% 100% 100% 100% 100%
Ton Barber Details 118% 67 % 121% 213% 124%
Release 1 - simple DP 118% 67 % 121% 213% 124%
Robert Gruber Details B4 Yo E1% 150%
Release 1 - simple DP 84 % 61% 150%
(Nobody}) Details 100% 100% 100% 100% 100%
Release 1 - simple DP 100% 100% 100% 100% 100%
(Unassigned) 100% 100%
Member Load
Member Name Done To Do Load
200 Dave Walker ‘ 8.00
eBasket Guest Viewer
Jon Barber 7.50
L60 Robert Gruber i i i i
Simon Baker Backlog Items Estimated Status Tracking Status (Active Sprints)
Count Count Lstimates Count Lstimates
Tests Priority Complenity
Count Count Estimates Count Estimates
8 10 11 12 13 . .
23/10/2004 2004 think-box Limited 108

Tracking and metrics

The release burndown chart shows the amount of user stories
remaining in a project

It is a powerful visual indicator of how quickly a team is moving toward its
goal

250 —

200—

150 —

Points

100 —

50—

| | [
Iterations

* Figure shows an idealised burndown for a project with 240 story points to
be delivered over 8 iterations

. 23M10/2004

2004 think-box Limited 107

Tracking and metrics

» |t's unlikely that a team with a velocity of 30 will maintain it over iterations

&
250—

200—] \/\

150—

Points

100—

50—

0 | | | |
lterations

= |teration 1: The team completed around the right amount of work

= |teration 2: There’'s more work than when the team started the iteration

» Burn up — work was added to the release plan
» The netresultis that the project is going backwards and away from its goal

2311012004 2004 think-box Limited 108

109

Days
2004 think-box Limited

[3

250—

% n_v .n_v n_v o
=] 0 =] o}
I3 - -

sinoH Bulwweafold eap|

The iteration burndown chart shows the amount of ideal programming
hours remaining by day

23M10/2004

wd
-
4]
i o
(&
<
s
@)
©
-
-
=
L2
-
9
et
1)
- -
@
—

Tracking and metrics

Tracking and metrics

1. Define velocity.

iteration?

from the figure below?

finish ahead, behind or on
schedule?

23M10/2004

3. What conclusions should you draw

Does the project look like it will

2. A story estimated at 1 story point actually took 2 days to complete. How
much does it contribute to velocity when calculated at the end of the

Story points

Actual

[terations

2004 think-box Limited

110

Tracking and metrics

4. What is the velocity of the team that finished the iteration shown below?

Story | Story points Status

1 4 Finished

2 3 Finished

3 9 Finished

4 3 Half finished
5 2 Finished

& 4 Not started
7 2 Finished

5. What circumstances would cause an iteration burndown chart to burn-up?

6. What are the missing values in the table below?

2311012004 2004 think-box Limited 111

Tracking and metrics

23M10/2004

6. What are the missing values in the table below?

Iteration 1 Iteration 2 Iteration 3
Story points at start of iteration 100 ? ?
Completed during iteration 35 40 36
Changed estimates 5 -5 0
Story points from new stories 8 3 ?
Story points at end of iteration 76 ? 0

2004 think-box Limited

112

Tracking and metrics

1. Velocity is the average number of story points completed over recent
iterations.

2. It contribute 1 story point to the velocity.

3. This team started out a little better than anticipated in the first iteration.
They expected velocity to improve in the second and third iterations and
then stabilise. After two iterations they have already achieved the
velocity they expected after three iterations. At this point they are ahead
of schedule but you should be reluctant to draw too many firm
conclusions after only two iterations.

4. The velocity is 16. Partially completed user stories do not contribute to
the velocity.

2311012004 2004 think-box Limited 13

Tracking and metrics

5. An iteration burndown chart would burn-up if new work is added faster
than known work being completed, or if the team decides that a
significant amount of future work has been underestimated.

23M10/2004

6. The completed table looks like:
Iteration 1 Iteration 2 Iteration 3
Story points at start of iteration 100 76 34
Completed during iteration 35 40 36
Changed estimates 5 -5 0
Story points from new stories 6 3 2
Story points at end of iteration 76 34 0

2004 think-box Limited

114

2311012004 2004 think-box Limited 115

References

» Agile Estimating and Planning
Cohn M (Not yet published), Addison Wesley

» Planning Extreme Programming
Beck K, Fowler M (2000) , Addison Wesley

Kent Beck
Martin Fowler

» User Stories Applied For Agile Software Development
Cohn M (2004), Addison Wesley

USER STORIES
APPLIED

FORrR AGILE SOFTWARE
DEVELOPMENT

. 2311012004 2004 think-box Limited 118

